If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-20p+84=0
a = 1; b = -20; c = +84;
Δ = b2-4ac
Δ = -202-4·1·84
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8}{2*1}=\frac{12}{2} =6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8}{2*1}=\frac{28}{2} =14 $
| 3(y-6)=42 | | 8(2x-3)-5(3x-1)=7(3x+4) | | -2n+3n=5 | | a/36=49 | | 11x+2(x+6)=-1 | | 2x-(4x-2)= | | 2(z-10)=-4 | | y-2/3=-8/9 | | -5-8=-9+x | | a/5+5=14 | | 11x-2x+6=-1 | | 5.01=z/0.005 | | 2/7x+8=20 | | 101=-y+272 | | 3x-11=x+41 | | -26=x/37 | | 7c+49=2+6c | | 1-2(x+3)=5 | | 2/5x+3/7=5/4-x | | 3(3+2x)=2(−4+3x) | | -8(x-8)=-40 | | X+y+36=180 | | -x-4(2x+10)=-20-8x | | -4x-7=-14 | | (1/4x)=(2/1) | | (2x-3)=(4x-4) | | 5(4x+5)=-95 | | (C+3)-2c(-13c)=2 | | 5c+-13c+20c+-7c=10 | | r/15=17 | | -x-4(2x+10)=-20+6x | | 4z/9-3=-4 |